In this section, we provide guides and references to use the Sagemaker connector.
Configure and schedule Sagemaker metadata and profiler workflows from the OpenMetadata UI:
How to Run the Connector Externally
To run the Ingestion via the UI you'll need to use the OpenMetadata Ingestion Container, which comes shipped with custom Airflow plugins to handle the workflow deployment.
If, instead, you want to manage your workflows externally on your preferred orchestrator, you can check the following docs to run the Ingestion Framework anywhere.
Requirements
OpenMetadata retrieves information about models and tags associated with the models in the AWS account. The user must have the following policy set to ingest the metadata from Sagemaker.
For more information on Sagemaker permissions visit the AWS Sagemaker official documentation.
Python Requirements
We have support for Python versions 3.8-3.11
To run the Sagemaker ingestion, you will need to install:
Metadata Ingestion
All connectors are defined as JSON Schemas. Here you can find the structure to create a connection to Sagemaker.
In order to create and run a Metadata Ingestion workflow, we will follow the steps to create a YAML configuration able to connect to the source, process the Entities if needed, and reach the OpenMetadata server.
The workflow is modeled around the following JSON Schema
1. Define the YAML Config
This is a sample config for Sagemaker:
Source Configuration - Service Connection
- awsAccessKeyId & awsSecretAccessKey: When you interact with AWS, you specify your AWS security credentials to verify who you are and whether you have permission to access the resources that you are requesting. AWS uses the security credentials to authenticate and authorize your requests (docs).
Access keys consist of two parts: An access key ID (for example, AKIAIOSFODNN7EXAMPLE
), and a secret access key (for example, wJalrXUtnFEMI/K7MDENG/bPxRfiCYEXAMPLEKEY
).
You must use both the access key ID and secret access key together to authenticate your requests.
You can find further information on how to manage your access keys here.
awsSessionToken: If you are using temporary credentials to access your services, you will need to inform the AWS Access Key ID and AWS Secrets Access Key. Also, these will include an AWS Session Token.
awsRegion: Each AWS Region is a separate geographic area in which AWS clusters data centers (docs).
As AWS can have instances in multiple regions, we need to know the region the service you want reach belongs to.
Note that the AWS Region is the only required parameter when configuring a connection. When connecting to the services programmatically, there are different ways in which we can extract and use the rest of AWS configurations.
You can find further information about configuring your credentials here.
endPointURL: To connect programmatically to an AWS service, you use an endpoint. An endpoint is the URL of the entry point for an AWS web service. The AWS SDKs and the AWS Command Line Interface (AWS CLI) automatically use the default endpoint for each service in an AWS Region. But you can specify an alternate endpoint for your API requests.
Find more information on AWS service endpoints.
profileName: A named profile is a collection of settings and credentials that you can apply to a AWS CLI command. When you specify a profile to run a command, the settings and credentials are used to run that command. Multiple named profiles can be stored in the config and credentials files.
You can inform this field if you'd like to use a profile other than default
.
Find here more information about Named profiles for the AWS CLI.
assumeRoleArn: Typically, you use AssumeRole
within your account or for cross-account access. In this field you'll set the ARN
(Amazon Resource Name) of the policy of the other account.
A user who wants to access a role in a different account must also have permissions that are delegated from the account administrator. The administrator must attach a policy that allows the user to call AssumeRole
for the ARN
of the role in the other account.
This is a required field if you'd like to AssumeRole
.
Find more information on AssumeRole.
assumeRoleSessionName: An identifier for the assumed role session. Use the role session name to uniquely identify a session when the same role is assumed by different principals or for different reasons.
By default, we'll use the name OpenMetadataSession
.
Find more information about the Role Session Name.
assumeRoleSourceIdentity: The source identity specified by the principal that is calling the AssumeRole
operation. You can use source identity information in AWS CloudTrail logs to determine who took actions with a role.
Find more information about Source Identity.
Source Configuration - Source Config
The sourceConfig is defined here:
markDeletedMlModels: Set the Mark Deleted Ml Models toggle to flag ml models as soft-deleted if they are not present anymore in the source system.
mlModelFilterPattern: Regex to only fetch MlModels with names matching the pattern.
overrideMetadata: Set the 'Override Metadata' toggle to control whether to override the existing metadata in the OpenMetadata server with the metadata fetched from the source. If the toggle is set to true, the metadata fetched from the source will override the existing metadata in the OpenMetadata server. If the toggle is set to false, the metadata fetched from the source will not override the existing metadata in the OpenMetadata server. This is applicable for fields like description, tags, owner and displayName.
Sink Configuration
To send the metadata to OpenMetadata, it needs to be specified as type: metadata-rest
.
Workflow Configuration
The main property here is the openMetadataServerConfig
, where you can define the host and security provider of your OpenMetadata installation.
Logger Level
You can specify the loggerLevel
depending on your needs. If you are trying to troubleshoot an ingestion, running with DEBUG
will give you far more traces for identifying issues.
JWT Token
JWT tokens will allow your clients to authenticate against the OpenMetadata server. To enable JWT Tokens, you will get more details here.
You can refer to the JWT Troubleshooting section link for any issues in your JWT configuration.
Store Service Connection
If set to true
(default), we will store the sensitive information either encrypted via the Fernet Key in the database or externally, if you have configured any Secrets Manager.
If set to false
, the service will be created, but the service connection information will only be used by the Ingestion Framework at runtime, and won't be sent to the OpenMetadata server.
Store Service Connection
If set to true
(default), we will store the sensitive information either encrypted via the Fernet Key in the database or externally, if you have configured any Secrets Manager.
If set to false
, the service will be created, but the service connection information will only be used by the Ingestion Framework at runtime, and won't be sent to the OpenMetadata server.
SSL Configuration
If you have added SSL to the OpenMetadata server, then you will need to handle the certificates when running the ingestion too. You can either set verifySSL
to ignore
, or have it as validate
, which will require you to set the sslConfig.caCertificate
with a local path where your ingestion runs that points to the server certificate file.
Find more information on how to troubleshoot SSL issues here.
2. Run with the CLI
First, we will need to save the YAML file. Afterward, and with all requirements installed, we can run:
Note that from connector to connector, this recipe will always be the same. By updating the YAML configuration, you will be able to extract metadata from different sources.